Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of system analysis code for pyrochemical process using molten salt electrorifining

Tozawa, Katsuhiro; ; Kakehi, Isao

JNC TN9400 2000-052, 110 Pages, 2000/04

JNC-TN9400-2000-052.pdf:4.39MB

This report describes accomplishment of development of a cathode processor calculation code to simulate the mass and heat transfer phenomena with the distillation process and development of an analytical model for cooling behavior of the pyrochemical process cell on personal computers. The pyrochemical process using molten salt electrorefining would introduce new technologies for new fuels of particle oxide, particle nitride and metallic fuels. The cathode processor calculation code with distillation process was developed. A code validation calculation has been conducted on the basis of the benchmark problem for natural convection in a square cavity. Results by using the present code agreed well for the velocity-temperature fields, the maximum velocity and its location with the benchmark solution published in a paper. The functions have been added to advance the reality in simulation and to increase the efficiency in utilization. The test run has been conducted using the code with the above modification for an axisymmetric enclosed vessel simulating a cathode processor, and the capability of the distillation process simulation with the code has been confirmed. An analytical model for cooling behavior of the pyrochemical process cell was developed. The analytical model was selected by comparing benchmark analysis with detailed analysis on engineering workstation. Flow and temperature distributions were confirmed by the result of steady state analysis. In the result of transient cooling analysis, an initial transient peak of temperature occurred at balanced heat condition in the steady-state analysis. Final gas temperature distribution was dependent on gas circulation flow in transient condition. Then there were different final gas temperature distributions on the basis of the result of steady-state analysis. This phenomenon has a potential for it's own metastable condition. Therefore it was necessary to design gas cooling flow pattern without ...

JAEA Reports

Designstudy on advanced nuclear fuel recycle system; Conceptual design study of recycle system using molten salt

; Kakehi, Isao; Moro, Satoshi; ; ; ;

JNC TN9400 98-003, 422 Pages, 1998/10

JNC-TN9400-98-003.pdf:21.36MB

Advanced recycle system engineering group of OEC has being carried out a design study of the advanced nuclear fuel recycle system using molten salt (electro-metallurgical process). This system is aiming for improvements of fuel cycle economy and reduction of environmental burden (MA recycles, Mimmum of radioactive waste disposal), and also improvement of safety and nuclear non-proliferation. This report describes results of the design study that has been continued since December 1996. (1)A design concept of the advanced nuclear fuel recycle system, that is a module type recycle system of pyrochemical reprocessing and fuel re-fabrication was studied. The module system has advantage in balance of Pu recycle where modules are constructed in coincidence with the construction plan of nuclear power plants, and also has flexibility for technology progress. A demonstration system, minimum size of the above module, was studied. This system has capacity of 10 tHM/y and is able to demonstrate recycle technology of MOX fuel, metal fuel and nitride fuel. (2)Each process of the system, which are pyrochemical electrorefining system, cathode processor, de-cladding system, waste disposal system, etc., were studied. In this study, capacity of an electrorefiner was discussed, and vitrification experiment of molten salt using lead-boric acid glass was conducted. (3)A hot cell system and material handling system of the demonstration system was studied. A robot driven by linear motor was studied for the handling system, and an arrangement plan of the cell system was made. Criticality analysis in the cell system and investigation of material accountancy system of the recycle plant were also made. This design study will be continued in coincidence with design study of reactor and fuel, aiming to establish the concept of FBR recycle system.

2 (Records 1-2 displayed on this page)
  • 1